d^2=125

Simple and best practice solution for d^2=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for d^2=125 equation:



d^2=125
We move all terms to the left:
d^2-(125)=0
a = 1; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·1·(-125)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*1}=\frac{0-10\sqrt{5}}{2} =-\frac{10\sqrt{5}}{2} =-5\sqrt{5} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*1}=\frac{0+10\sqrt{5}}{2} =\frac{10\sqrt{5}}{2} =5\sqrt{5} $

See similar equations:

| 4x+6+4x-4=180 | | 19-√(7x-5)=15 | | 4/6x=2/3 | | 99=36x | | 3(x-4)+2=x-2 | |  2x−2 =4x+6 | | r+14-1=81 | | 383.264=5.8(77v+6.02) | | 5x/9-11=72 | | 2x.5+6=16 | | X+79=9x-4 | | .9(k-4)-7k=32-2(k+8) | | .28x=35 | | 3(x-12)=4(x-7)-2 | | -84=4x+4(x-5) | | 416=-8(4-8p) | |  2x−2=4x+6 | | 3(2x^2-1)=8x | | (8/9x-1/3=2/3x+1/3) | | 10n/21=1/7 | | -180=½(36k-72) | | 4-x=2x-7x | | –48=-4c–16 | | 2x+5+3×-2=18 | | 21+8x=51-7x | | -16t^2+32t-240=0 | | 7y-3=5y+7/3 | | x+7x+8=38 | | -180=1/2(36k-72) | | x^2+x+10=5 | | –6−9c=–7c−10 | | 3(1+4x)-6x=3(1-3x |

Equations solver categories